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1. INTRODUCTION

Let &, ||*|| be a real normed linear space, and let ¢y, ¢,,..., ¢, be n linearly
independent elements of &#. For each «=({(a,,a,,...,4,) € E,, the (real)
Euclidean n-space, let P, =a; ¢, + ardy + ... + @,y

For each given f'e &, the problem of finding an element P, such that

|F— Pyl SIF—P,|, forallackE,

is called the best approximation (b.a.) problem, and a corresponding solution
is called a best approximation to F.

The existence of a solution to the b.a. problem is well known (see e.g. [3]).
However, the question of uniqueness is more complex. If the norm in question
is strictly convex, then each F € & has a unique b.a. The L, norms, 1 < p < ,
are strictly convex; however, the important L, and L_ norms are not.

Haar [5] proved the following theorem, which helped to answer the question
of uniqueness for the uniform norm.

THeorREM 1.1 (Haar). Let the compact set D C E, contain at least n distinct
points. A necessary and sufficient condition that a unique solution exist to the
best uniform approximation problem for each given Fe C(D), is that the
functions {¢;} satisfy the following property:

(D) P, =", ayd; vanishes in at most n— 1 distinct points of D, unless
a; =a2=...=a,,=0.

Property (1) is equivalent to:

i(x) ax) ... Pulxy)
') i ¢l(:x2) ?”z(xz) ‘f’n(xz) #£0

|3 balxn) e han)

for every set xy,%,,...,X, of distinct points of D.
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DrrinttIoN 1.2, A family of real-valued functions ¢,,¢,,...,¢, is called a
Chebyshev system on D, if and only if they satisfy property (1) (or, equivalently,
property (2)) of Theorem 1.1,

Remark. If D* ¢ D and {¢,} is a Chebyshev system on D, then it is also a
Chebyshev system on D*,

Remark. If {¢;} is a Chebyshev system on D (containing at least » distinct
points), then it is a linearly independent system on D.

Mairhuber [7] established necessary and sufficient conditions for a set D to
serve as the domain of definition of a Chebyshev system.

THEOREM 1.3 (Mairhuber). 4 compact set D c E,, containing at least n points,
may serve as the domain of definition of a nontrivial (n 2 2) Chebyshev system of
real-valued continuous functions ¢, ¢,,. .., ¢y, if and only if D is homeomorphic
to a closed subset of the circumference of a circle.

Therefore, with the exception of the two cases cited in the above theorem,
the best uniform approximation problem has a non-unique solution for some
Fe C(D).

Chebyshev sets also play a significant role in the question of uniqueness of
abest L, approximation (see e.g. [/7]). However, the primary goal of this paper
is to define and investigate a Chebyshev-like approximation which possesses
the property of uniqueness for all F e C(D). We shall call this approximation
the product Chebyshev approximation. We simultaneously define product
approximations for all of the L, norms, 1 £ p £ «,

The primary virtue of uniqueness is one of communication. We can speak
of “the” best uniform or “the” least squares approximation to F. Secondly,
uniqueness will often facilitate the algorithm (s) used to find an approximation,

2. Tue ProODUCT L, APPROXIMATIONS TO A CONTINUOUS FUNCTION

Let D denote the rectangle [a,b] x [¢,d], a < b, ¢ < d, and let F e C(D).
For each y € [c,d], define the continuous function F, on [a,b], by

Let ¢y, s, ..,¢, be a Chebyshev system of continuous real-vatued functions
on [a,b]. Let ||-|| be any one of the L, norms on [a,5], 1 £ p = . Let{¢;,d,,...,
&> denote the linear space spanned by ¢, ¢s,...,d,.

For each y € [¢,d], there exists (even when p = 1) a unique “polynomial”

Pa= 3 (b o) = @ONa(0), 03 € By

which is the best ||- || approximation to F, on [a,b].
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We will show that the functions a,(+),j = 1,2, ...,n, are continuous on [¢,4].
Hence, if &, ¢,..., 1, is a system of real-valued continuous functions on
[c.d], then each a; possesses, among all linear combinations of the s,
a b.a. on [c,d].

Foreach y € {c,d}, let

P(y) = miEn HFy “chH = E[Fy “Poz(y)‘.‘-

THEOREM 2.1, The function p(+) is continuous on [c,d].

Proof. Given any € > 0, by the uniform continuity of Fon D, there exists a
8 = &8(¢) > 0 such that

ly—y <8, yand y, € ¢, d] =
p(¥) = p(¥1) = [[Fy — Pogyl — 1y, — Pag)
SNEy = Pl — 11y — Pagyyy|
<|IFy— Byl <.
Similarly, p(y1) — p(¥) = |Fy, — il = [IF, — F, || < e.

Throughout this paper o will denote the usual Euclidean metric on the space
in question.

THEOREM 2.2. Let X, || || be a normed linear space and let F, ¢, ¢,, ..., ¢, € X.
For each o= {ay,a,...,a,) € E, let Py =% a; ;. Let p=inf,op |[F — Pyl and
A*={ac B F— P, =p).
Given any ¢ > 0, there exists a 8 = 8(¢) > 0 such that

|F—P,<p+06=o(x;4%)= inf ole;a*) <e.

akehd*®

Proof. A* is a nonempty compact set. The function R defined by R(a) =
|F— P, is continuous on E,.

Assume that there exists a sequence {o,}; such that R{e,)} =< p+ (1/n) and
afo,; A*) = <. Let [|Fli = M. Then,

[Poll S NF + 1 — Py,
§M+p+}1;§M+p+1, forn=1,2,....

Therefore, the sequence {«;: i==1,2,...} is bounded (see, e.g., [6], p. 16).
Let o be any limit point of {«;}. Then R(a) £ p, which implies « € 4*. However,
(o ; A¥)Z eforn=1,2,..., implying 0 = o(o; A%} = e.

28
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THEOREM 2.3. The function o(-), defined at the beginning of this section, is
continuous on [c,d].

Proof. Let y; be a point of [¢,d] and let € >0. Let 8 >0 be such that
1Fy, — Pall < p(yy) + & = o(ax;a(y;)) < e. By the uniform continuity of F on
D and of p(+) on [¢,d], there exists a 6; > O such thatif y € [c,d]and |y — y;| <
3\, then ||F,, — F,)| < 8/2 and |p(y) — p(»1)| < 8/2. For such a y, we have

HFM "sz(y)“ = ilex - Fy” + ”Fy - Pct(y)”
)
<5+ p(y)

<p(y1) +9,
and, therefore, o{e¥);o(y;)) < e.

COROLLARY. The functions a ), j=1,2,...,n, as defined at the beginning of
this section, are continuous on [c,d ).

Let iy, s, . . ., 1, be a Chebyshev system of continuous real-valued functions
on [¢,d].

DEFINITION 2.4. Let

nt

Qa;= -Zx @i o= (G185, Gpy) € By,
i

be the unique best L, approximation to a,(-), for j=1,2,...,n.
The function
T,= 21 Ou;b;= 21 Z a;bih;
i~

J=1i=1

is called the product L, approximation to F on D relative to the variable y.

We can similarly define the product L, approximation to F on D relative to
the variable x. The following example illustrates that these two approximations
may be distinct. '

BxamPLE 1. Let D =[—1,1] x [-1,1],

=2yx*+y, —1=2y=s0,

Fa.y)= {Zyx, 0<y=1,

andletn=m=1,¢,(x)=1,¢,(y)=1.
Then the best uniform approximation to F,(-) on [—1,1]is P,,(-) =0, and
the product L, approximation to F on D relative to yis T,(x,y) = 0.



APPROXIMATIONS OF FUNCTIONS OF SEVERAL VARIABLES 437

Similarly we find that the product L_ approximation to & on D relative to x
is Ty(x,y) = (2 — V2)/4.

Product L, approximations will be called product Chebyshev (P.C.)
approximations. Throughout the remainder of this paper, P.C. approxima-
tions will mean P.C. approximations relative to the variable y.

Remark. 1f T, is the product L, approximation to ¥ on D, and A is any real
number, then AT, is the product L, approximation to AF on D.

Remark. If P+(x) = 2%, a;% (x) is the best L, approximation to F(x) on
[a,b], and Qp«(y) = 27, b;*4(y) is the best L, approximation to G(y) on
[c,d], then P, s(x)Qp«(y) is the product L, approximation to H({x,y)=
F(x)G(yyon D =1a,b] x [¢,d].

Remark. If ¢,(x) and ¢;,(y) are nonzero constants, and if Py«{x) and Qgs(»)
are as in the last Remark, then P,«(x) + Og«(y)is the product L, approximation
to H(x,y) = F(x) + G(y) on D = [a,b] x [¢,d].

The following counter-example illustrates the necessity of the inclusion of a
nonzero constant in each of the systems {s;}, {i;} in this Remark.

ExampLE 2, Let D =1{1,2] x [1,2] and let

Hx,py=x+y, n=1,m=2, d(x)=x, Si{y)y=1,
¥y =y.

Then {¢;} is a trivial Chebyshev system on [1,2], since a; x =0 can have no
solutions in [1,2], unless a; = 0.

For each y € [1,2], Py,,(x) = (I +3)x, and therefore the P.C. approxima-
tionto Hon Dis T,(x,y)=(1 +%y)x.

The best uniform approximation to F(x) = x on [1,2}1is P,«{(x) =x, and the
best uniform approximation to G(y) =y on [1,2}is Qgs(y) = y. However,

Pous(x) + Qpe(y) = x + y # T (x,).

Similarly, if Hand D areasaboveand n=2, m=1, $,(x) =1, o(x) = x,
#1(y) =y, then
Taxy) =1 +4x)y #x +y.

3. COMPUTATION OF THE PRODUCT CHEBYSHEV APPROXIMATION

Throughout the remainder of this paper, our attention is restricted to the
uniform norm.
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DEerFNiTION 3.1, Let D < E, and let G map D into E,. A point x, € D is
called a positive (negative) extremal or an e+ (¢—) point for G if G(xy) =
supp [G(x)| (G(xo) =—supp |G(x))]).

The best uniform approximation is characterized by the following theorem.

THEOREM 3.2. Let {¢;} be a Chebyshev system of continuous functions on an
interval D = [a,b](—w < a < b < ). Then P, is the best uniform approximation
to a continuous F on D if and only if there are n + 1 points x; < x; <... < X,
in D, which are alternately e+ and e— points for F — P,.

Note that this characteristic point set need not be unique.

The linear system

Po((xi)_}‘(—l)ip:F(xi)’ i:1,2,...,n+1,

can be solved for « = (4,4, . ..,a,) and p. Therefore, by finding a characteristic
point set, one can obtain the b.a.

One iterative procedure which seeks to find the b.a. by finding such a point
set, is the Remez exchange algorithm. The convergence of this procedure is
outlined in Remez [/0] and proved in Novodvorskii and Pinsker [§]. Ver-
dinger [17] shows that if F is differentiable, then the rate of convergence is
quadratic.

We can now describe the first product Chebyshev algorithm.

Algorithm 1. (1) Choose some finite point set ¥ < [¢,d].

(2) For each y € Y, use the Remez exchange algorithm to find P,,,, the
best uniform approximation in (¢, ¢, ...,¢,> to F, on [a,b].

(3) For each j=1,2,...,n, use the Remez exchange algorithm to find
0., the best uniform approximation in (i}, s, ..., $,,> to a,(-) on Y.

The function 7, =>"_, O,,¢, is the P.C. approximation to F on D=
[a,b] x Y.

We wish to know how close are T, and 7', the P.C. approximation to F on
D =[a,b] x [c,d].

TuaeEOREM 3.3 (Rivlin and Cheney [/3]). Let M be a finite-dimensional sub-
space of C(D) and let F be an element of C (D) which has a unique best approxi-
mation Pys in M. For any Y < D let P, denote a b.a. to F from M on the set
Y. Then as

8y = max o(x; ¥) = maxinf o(x;y) - 0,
xeD xeD yeY

P, — Py uniformly.
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Given any € > 0, by Theorem 3.3 we can choose Y < [¢,d] such that 8y is
sufficiently small to have

max |0, (1) — Q. (M) < e(n max [gbj(x)[)“, forj=1,2,...,n
yele,d] xela, bl

Hence, 1Ty — Tyll, =

Jél (roj - chj) ¢'J’

100

< 3 max |0,y — 0u(7)| max [(x)

J=1yele, 43

xela, b

<3 [ mec IO ma )
Jj= xefa, bl

Therefore, if ¥is chosen such that 8 is sufficiently small, then T, provides a
good estimate for T',.

A Fortran V program for Algorithm 1, using double precision arithmetic,
was written for the Univac 1108 computer with the following results (Table 1).

In each example, D = [—1,1] x [-1,1],

Y ={-1.00,—98,-.96,...,1.00}, D=[-1,11x 7,
?S](X) = 17 d)Z('x) =Xy ﬁbn(x) = xn_lz
Sbl(y) = 15 l/,;2(,)}) =Y, l[‘m(y) =}’m—ls
and Norm denotes the number
HF— TA”co = mg'x iF(x,y) - TA(x:y)]'
For economy of space, Norm is given only for several of the larger choices of
n and m.
In Algorithm 1, P_,,, the b.a. to F,, must be found for each y € Y. By the
continuity of a( ), for y sufficiently close to y;, Py, will provide a good initial
guess for P,,,,. More directly connected with the Remez exchange algorithm,

we shall show that a set of characteristic extremals for Fy, — Py, will often
provide a good initial guess for a characteristic point set for F, — P,,,.

DrrFNITION 3.4, Let R be the continuous function defined on D by

R(x,y)=F, y(x) —-P oz(y)(x)-
Hence, p(¥) = max |R{x,»)|.
xefa, bl
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TABLE 1

1
PN =373

(@) mn=m=3, T,u(x,y)=.33162— .11665x + .03721x% — . 11658y + .11235xy —
.07081x% y + .037263% — .07085x)* + .06057x2y*, Norm = .46090-01.

(b) n=m=4, Norm =.12637-01.

(¢) n=m=5, Norm=.34346-02.

(d) n=m=6, Norm=.91519-03.

F(x,y) = n=m=26, Norm =.19451-07.

x+y+10°

F(x,y)=\/x+y—l—3

(@) n=m=2, T,(x,y)=1.70563+ .30073x + .30076y — .05701xy, Norm =
47135-01.

(b) n=m=3, Norm —.64898-02.
(¢) mn=m=4, Norm=.11031-02.
(d n=m=35, Norm =.20864-03.
(¢) n=m=6, Norm=.42162-04,

Fle,y)=Vx+y+10, n=m=6, Norm =.17133-07.

Flx,y)=e®

(@) n=m=3, Ta(x,y)=1.00140 — .00687x> -+ 1.09731xy — 1.00603y* + .55404x% 17,
Norm = .83359-01.

(b) n=m=4, Norm=.10830-01.
(¢) n=m=35, Norm =.10982-02.
(d) n=m=6, Norm =.91866-04.

F(x,»)=e**, n=m=26, Norm =.67907-02.

F(x,y) = sin(xy)
(@ n=m=2 and n=m=23, T,(x,»)=.91010xy, Norm = .68634-01.
) n=m=4 and n=m=5, Tulx,y)=1.00077xy —.00312x%y —.00313x)° —
.15402x% %, Norm = ,96828-03.
©) n=m=6 and n=m=7, T4(x,y)=1.00000xy+ .00002x%y — .00004x5y +
.00002xy? - .16681x° p* +.00029x° y* — .00004xp% + .00029x° 5 + .00774x5 5,
Norm = .59600-05.

F(x,y)=sin@2xy), n=m=6 and n=m=7, Tu(x,y)=1.99977xy + .00195x3 y —
.00416x5 y + .00195xy% — 1.34949x% 3° + .03403x5 33 — .00416xy5 +
.03403x2 35 + .19606x°y°, Norm =.69531-03.
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DEFINITION 3.5, For each y € [¢,d], let

E(y)={x e [a,b]:|R(x,»)| = p(1)}

the set of all extremals for F, -- P .
E(y)is a non-empty compact subset of [a,b].

DrrmiTION 3.6. For each y € [¢,d], and each € > 0, set

E(y).={xela,bl:|x—¢| <e forsome eecE(y)}.

THEOREM 3.7. Given an € > 0 and a y, € {¢,d], there exists a § = 8(e,y,) > 0
suchthaty € [e,d] and |y — y,| <6 = E(y) < E(y))..
Proof. If E(y,). = [a,b], then the theorem is true trivially. If not, let

M= max |Rx,y)| <p(y)=p:

xela, b1I-E(W1)e

By the uniform continuity of R on D, there exists a

8:8(91;M)>0,

such that
[R(x,y) — R(x,p)| <=5

forall x € [a,b] and all y € [¢,d] with |y — | < 3. Then

max  |R(x,»)] M T
xefa, b1~E(¥1)e 2 2

Also,
xe€E(y), yeledl, |y—w|<8

_M \ _M M ,
= [RG )| = RG] = Py = py = B - = B

M+ py

= p(y)>
Therefore, x € {a,b] — E(y(). = x ¢ E(»).

COROLLARY. If ¢ (x) = 1, dr(X) = x, ..., d () = X"  and if

arhl
a ne-lF(x y)
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exists and is # 0 throughout D, then there are n -+ 1 continuous functions
x1(),x%2(), X004 (2), such that for each yele,dl, x(y)<x(y)<...
< Xu41(¥) s the unique set of n + 1 alternating extremals for F, — Py,

Proof. Since
o +1 n+1

d
Frs F(x,y)= WFy(x) #0,

F,— P, has exactly n+ 1 extremals for each y € [c,d]. Theorem 3.7 com-
pletes the proof.

In general, if F, — Py, has exactly # + 1 extremals for each y € [¢,d], then
the conclusion of the Corollary holds.

Theorem 3.7 and its Corollary suggest that for y sufficiently close to y,, a set
of n+ 1 alternating extremals for F,, — P,,,, might be a good initial guess in
the Remez exchange algorithm to find P,,,.

Algorithm 2. (1) Choose some finite point set

Y= {ylny2:~- 'zyN} < [C,d].

(2) Use the Remez exchange algorithm to find P,,,,, the best uniform
approximation in {¢,¢,,...,$,> to £, on [¢,d].

(3) Choose a set of n-1 alternating extremals for F,, | — P, ,, as an
initial guess for a corresponding point set in the Remez exchange algorithm to
find Py, i=2,3,...,N.

(4) Use the Remez algorithm to find 0, ,» the best uniform approximation in
<¢ls 1/’2,- " ¢m> to aj(') on Y.

A Fortran V program for Algorithm 2, using double precision arithmetic,
was written for the Univac 1108 computer. Several examples were run, using
this program and the corresponding program for Algorithm 1. Some of the
comparative times are tabulated below. In each case, the resulting approxima-
tion was identical for both programs.

As before, in each example D = [-1,1] x [-1,1],

Y= {-1.00,—98,...,1.00), D—[-1,1]x ¥,
Sbl(x) = 17 ¢2<x) =X, .00 ¢n(x) = xn—l’

and

SN=L() =y () =y""

The tabulated times are in seconds.
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TABLE 2

Function n m Time of Algorithm 1  Time of Algorithm 2

1

— 4 4 46.245 22.712
x+y+3
5 5 48.321 22.989
6 6 51.586 25.207
Vx+y+3 4 4 50.408 23.409
5 5 52.256 20.062
6 6 52.619 29.639
e 6 6 59.323 46.450
ey 6 6 84.194 57.003

4, THE DEGREE OF APPROXIMATION

In this section it is shown that each Fe C(D) can be approximated arbi-
trarily close by a P.C. approximation of sufficiently high degrees # and m.

DEFINITION 4.1. Let &, ||+ || be a normed linear space. A sequence {¢} in &
is called fundamental if and only if the span of {¢;} is dense in &

ExaMmeLE 3. 1,x,x%,... is fundamental in C[0,1].

ExAMPLE 4. 1,sinx,cosx,sin2x,cos2x,... is fundamental in C,,, the space
of continuous functions of one real variable, with period 2.

DeriNtTION 4.2, {¢;}is called a Markoff system on [@, b]if every initial segment
{¢1,$2,...,¢} is a Chebyshev system on [a,b].

THEOREM 4.3. Let {¢;} be a Markoff system on {a,b), fundamental in Cla, b},
and let {;} be a Markoff system on [c,d], fundamental in Clc,d}. Given an
€ >0 and an F € C(D) (where D = [a,b] x [¢,d]) there exists an N = N(¢) and
for each n> N(€) there exists a corresponding M = M (e,n), such that n> N

andm > M = |[F— T,|| < e, where T , is the P.C. approximation to F on D, and
|1l is the uniform norm on D.

Proof.

mgXlF (%,9) = Pyy(*)| = max {max [Fy(x) — P,,(x)]} = y?;?);]p(y)'

yele,dl xela, b1
29
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By the uniform continuity of p(-) on [c,d], there exists a > 0, such that

yuy2€le,d]l  and |y, —yi] <8 = p(¥) < p(2) + €/4.

Let k be the largest integer jsuch that 2j8 £ d —c. Let Y= {yo,V1,...,Vc}»
where y; = C+2j8,j=0,1,...,k.

Since {¢;} is fundamental in Cla,b], given any € >0, for each i=1,2,..,k,
there exists an N; such that

n>N; = p(y;) = rga)zf] lei(x) _Poc(yi)(x)[ <e/4,
where P,,,(*) is the b.a. in (¢, é,...,$,> to F,(+) on [a,b].
Set N = max (N, N,,...,N,). Then
n> N = p(y;) < €/4, fori=1,2,...,k.

Given any y € [¢,d], there exists a corresponding y; € Y such that | y — y;] <8,
which implies
p(y) <p(y) + /4 <e/2.

Therefore,

n> N = max p(y) < €/2.
yelce, dl

Since ¢y, ¢,,..., ¢, is a Chebyshev system on [a, 5], [|¢;|| > 0 for j=1,2,...,7,

Since {i,} is fundamental in C[c,d], given any € >0, for each j=1,2,...,n
there exists an M such that

m>M; = max la,(y) = Qu,(y)| < /L2l
where Q, (+) is the best uniform approximation in (1, %,,..., 4, to a,(*)
on [¢,d].
Set M =max(M,M,,...,M,). Then

m > M = max [Puin(X) — Ty(x, )] = max Ié @(y) = Qu(¥)) bi(x)]

S 3 max la(y) = Q)] max |4,

ele,

s 3 (e/nlg;mIgi =5
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Therefore,

n>N and m>M=|F-T,|= mgx |F(x,p)— T4(x, )]

< mgx [F(x,») ~ Pouy(X)| + mla;lx [Poiny(x) — Tu(x, )]

<z+5=¢

<
22

CoroLLARY, Under the hypotheses of Theorem 4.3, there exists an N = N{¢)
and for each n> N(e¢) there exists a corresponding M = M (e,n) such that
n>Nandm> M = [T, — Pl < e, where

m n
Po=2 2 ayd;th

i=1 j=1

isab.a.to Fon D.

Proof. Let N and M be, respectively, N and M of Theorem 4.3, but with
replaced by ¢/2. Then

n>N and m>M = |[Ty— Pl S |F =Ty + |[F— Pl

S2F—T4
<2§=e.

At the present time there is no known effective scheme for computing a best
uniform approximation to a function of two variables. Present research is
being directed towards schemes somewhat like the Remez exchange algorithm.
A good initial guess is needed if such an iterative procedure is to converge,
and if the computation time is to be reasonably short. Theorem 4.3 and its
Corollary suggest that the product Chebyshev approximation might be a good
initial guess for a best uniform approximation.

5. THE PropucT CHEBYSHEV APPROXIMATION TO A CONTINUOUS FUNCTION OF
THREE OR MORE VARIABLES

For simplicity of notation, attentionis restricted to the case of three variables.
Let D=1Ja,blx[c,d] x[e,f], where a<b, c<d, and e<f, and let
Fe C(D).
For each (y,z)€[c,d] x [e, f], define the continuous function F, , on
[a,b] by
B ()=F(,»,2).
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Let ¢y, ¢,...,¢, be a Chebyshev system of continuous real-valued functions
on [a,b]. Let ||-]|, be any one of the L, norms, 1 < p < .
For each (3,2) € [¢,d] X [e, f], there exists a unique “polynomial”’

Poz(y, z) = jgl aj(y, z) d’ja oy, z)=(a:(y,2),a(y,2),...,a,(¥, z))€E,
which is the best |||, approximation to F, , on [a,b].
For each (y,2) e [c,d] x [e, f], let
P(ya Z) = min ”Fy, z -Pa”p-

acEn

The following extensions of Theorems 2.1 and 2.3 are straightforward.
THEOREM 5.1. p(p,Zz) is continuous on [c,d] X [e, f].

THEOREM 5.2. ol y,z) is continuous on [c,d] x [e, f].
Let {f,} and {0,} be Chebyshev systems of continuous real-valued functions
on [c,d] and [e, f], respectively.

DEFINITION 5.3. Let T, be the product L, approximation to a,(+) on [¢,d] x
[e, f] relative to z, for j=1,2,...,n.

The function T, = >7.; Ty, ¢; is called the product L, approximation to
Fon D, relative to y, z.

The product L, approximation depends on the order in which the variables
are specified, as in Example 1 of Section 3.

The product L, approximation is extended to continuous functions F
defined on a more general set D, in [18].
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